辅助全球定位系统(A-GPS)

十年前的E911法案启动了消费型GPS第一个成功的里程碑,自此以后,GPS接收器的灵敏度进步了几乎千倍以上,超过九成(五亿支) 以上的手机已搭配GPS 功能并以主机式GPS(Host-based GPS)为标准。联邦传播委员会(FCC)及美国国会在1999年通过了E911法案,此法案规定当手机使用者拨打911紧急电话时,手机可自动提供通话位置信息。原本,辅助定位系统(A-GPS)只用于移动电话网络与GPS时间同步的时间校对,且主要是用在CDMA的电信网络。而全球最大的电信网络GSM和3G并不与GPS时间同步。所以在早期,一般认为非GPS技术(如现在已被淘汰的增强观测时差E-OTD等技术)会在E911法案中胜出的。然而,正如我们现在所知道的,GPS和全球导航卫星系统(GNSS)成了手机定位系统的大赢家。E911法案是GPS在美国发展的主要动力,并且间接促进了全球GPS的发展。这要归功于以下我所要谈论的七项关键技术,它们使GPS技术在过去多年来逐渐成熟。

关键技术一:辅助定位系统(A-GPS)

关于A-GPS有三件值得记住的事:“更快、更长、更高”。透过奥林匹克运动会的名言“更快、更强、更高”,你就可以记得住了。

A-GPS最显著的特征,是它使用卫星轨道资料传送替代了原有基站传送相同(或等量)的轨道数据,所以A-GPS接收速度更快。在过去,接收器必须在二维代码/频率空间中,搜索每一个GPS卫星信号。而辅助数据缩减了搜索范围,让装置可以用更长的时间来做信号整合,换句话说,就是敏感度更高了 (见图1)。就是我们说的更长,更高。

现在,我们更进一步来看看代码/频率搜索,并介绍精确校时、粗略校时以及大规模平行关联器等概念。任何辅助数据都可以减少频率搜索次数,频率搜索的概念就是如同你转动车上的收音机旋钮,寻找电台位置。只不过由于卫星移动,会产生不同的GPS频率,也就是多普勒效应。如果你可以预先知道卫星是如何设置的,就可以缩小频率搜寻的范围。

代码延迟(code-delay)就更加敏锐了。C/A 代码的重复周期是1ms,所以如果可以在获得卫星信号之前,就知道比1ms更精确的GPS时间,便可以缩小代码延迟搜索区域,这就是我们所说的“精确校时”。

CDMA通信网络是和GPS的时间同步,而最普遍的通信网络(GSM及目前的3G)则不然。后者与GPS时间有±2秒的误差,我们称之为粗略校时。在最初,只有精确校时的网络可以应用A-GPS,但后来局势改观是因为我们有了关键技术二、关键技术三,那就是大量平行关联器和高灵敏度。

 

   来源:电子发烧友
微信扫描分享本文到朋友圈
扫码关注5G通信官方公众号,免费领取以下5G精品资料
  • 1、回复“YD5GAI”免费领取《中国移动:5G网络AI应用典型场景技术解决方案白皮书
  • 2、回复“5G6G”免费领取《5G_6G毫米波测试技术白皮书-2022_03-21
  • 3、回复“YD6G”免费领取《中国移动:6G至简无线接入网白皮书
  • 4、回复“LTBPS”免费领取《《中国联通5G终端白皮书》
  • 5、回复“ZGDX”免费领取《中国电信5GNTN技术白皮书
  • 6、回复“TXSB”免费领取《通信设备安装工程施工工艺图解
  • 7、回复“YDSL”免费领取《中国移动算力并网白皮书
  • 8、回复“5GX3”免费领取《R1623501-g605G的系统架构1
  • 本周热点本月热点

     

      最热通信招聘

      最新招聘信息

    最新技术文章

    最新论坛贴子