0 引 言
在软件无线电(SDR)技术实现的收发系统中,数字锁相环在载波同步、位同步、相干解调、信号跟踪、频率选择等方面发挥着重要作用,已成为数字调制/解调,数字上变频/下变频中不可缺少的核心器件。接收机为了提取载波,普遍采用平方环法和科斯塔斯环法,其中平方环以其电路结构简单而得到了广泛应用。但在平方环电路的设计中,由于NCO(或VCO)工作在2ωc频率上,当环路锁定后,其NCO(或VCO)的输出需经过二分频才能得到所需载波。而二分频电路在实现过程中,特别是在对NCO进行数字分频时,用FPGA实现太耗资源。
以下提出一种新的数字平方环电路,实现了从BPSK信号中提取相干载波的功能,简单易行,便于实现,并对其进行了数学推导和建模仿真,具有良好的实用价值。
1锁相环的结构
锁相环(PLL)由鉴相器(PD)、环路滤波器(LF)以及数控振荡器(NCO)组成,如图1所示。
鉴相器通常由乘法器来实现,鉴相器输出的相位误差信号经过环路滤波器滤波后,作为数控振荡器的控制信号,而数控振荡器的输出又反馈到鉴相器,在鉴相器中与输入信号进行相位比较。PLL是一个相位负反馈系统,当PLL锁定后,数控振荡器的输出信号相位将跟踪输入信号的相位变化,这时数控振荡器的输出信号频率与输入信号频率相等,但相位保持一个微小误差。
2平方环法的工作原理
在平方环载波恢复电路中,BPSK信号经平方后得到两倍载频的频谱分量,用锁相环提取这一分量,然后进过二分频可得到载频分量,如图2所示。
因鉴相器采用乘法器实现,则鉴相器输出相位误差信号为:
其中,Kd=KpA/4。环路滤波器的输出仅与数控振荡器输出和输入信号之间相位差有关,控制电压,以准确地对数控振荡器进行调整。显然,当本地恢复的同相载波与调制载波达到同频同相时,△φ=0。因此,解调的关键在于调整NCO输出信号的频率和相位,使其最终满足△φ=0或在一个很小的范围内,即相干解调的本地载波同步问题。锁相环在工作时可能锁定在任何一个稳定平衡点上。这意味着恢复出的相干载波可能与所需要的理想本地载波同相,也可能反相。由于本地参考载波有0,π模糊度,因而解调得到的数字信号可能极性完全相反,从而1和0倒置。这对于数字传输来说当然是不能允许的。克服相位模糊度最常用且最有效的方法是在调制器输入的数字基带信号中采用差分编码。
3改进平方环的工作原理
改进的平方环载波恢复电路,如图3所示。利用DDS产生的NCO数控振荡器能够输出完全正交的正余弦信号,并考虑到三角函数之间的关系sin(2ωct+2△φ)=2sin(ωct+△φ)cos(ωct+△φ),因此这里将NCO的频率锁定在载波频率ωc上,然后将NCO两路正余弦输出通过一个乘法器再增益2倍,并且在FPGA实现时,只需要进行简单的移位就能完成乘除法的运算,输出就为传统平方环的NCO输出,由于数控振荡器将频率锁定在ωc上,所以它的正弦输出即为提取的载波,省去了二分频电路。由于传统的二分频电路均采用数字分频电路,不能保持原有的正弦波形,因此还需要附加滤波器等电路。相比改进的电路要复杂得多,并且在实现上也不如改进之后的容易。
4环路部件
4.1 鉴相器
在锁相环中,鉴相器(又称为相位检测器)是一个相位比较装置。它是将输入信号与数控振荡器的输出信号的瞬时相位进行比较,产生一个输出电压。这个电压的大小,直接反映两个信号相位差的大小;这个电压的极性,反映输入信号超前或滞后于数控振荡器输出信号的相对相位关系。由此可见,鉴相器在环路中是用来完成相位差与电压变换的,其输出误差电压是瞬时相位误差的函数。
4.2环路滤波器
环路滤波器用于衰减由于输入信号噪声引起的快速变化的相位误差和平滑相位检测器泄露的高频分量即滤波,以便在其输出端对原始信号进行精确的估计,环路滤波的阶数和噪声带宽决定了环路滤波器对信号的动态响应。文献[5]对几种常用的环路滤波器性能进行了详细的分析。由于一阶环路滤波器会产生稳态相差,从而降低系统误码性能;三阶环路滤波器实际实现难度较大;二阶环路滤波器在直流增益为无穷大,而频偏为常数的情况下,仍然能够实现稳态,实现难度适宜,即采用二阶环路滤波器,其结构框图如图4所示。