1 引 言
射频识别(Radio Frequency Identification,RFID)技术是近年来兴起的一种自动识别技术。射频识别系统主要由读码系统和标签系统组成,通过无线射频信号传递信息,天线性能的好坏直接影响到整个系统的读写距离和识别率。RFID标签芯片阻抗一般具有电阻较小而容抗较大的特点,且每个芯片都有其特定阻抗,因此必须针对特定芯片设计与之匹配的标签天线。
目前,RFID没有全球统一的频率划分规范,在UHF频段,主要有欧洲的866~869 MHz及美国的902~928 MHz。中国刚刚公布的频率标准为840~845 MHz和920~925 MHz两个频段。2005年9月,Cho,C等提出一种双支弯折偶极子加双T形馈电网络的标签天线结构,带宽达到65 MHz(S11<-10 dB),实现了在867 MHz及915 MHz双频谐振,但是此天线结构复杂、阻抗匹配调整不便。H.Choo等提出另一种实现宽频的较简单的天线结构,即电磁耦合馈电结构,但是天线结构仍然较复杂,参数较多,阻抗调整不易。Li Yang等的文章中提出一种增益很高的双辐射边天线,但是全向性不好,标签使用范围受限制。
本文同样采用电磁耦合馈电结构,针对Philips公司的SL3S3001 FTT芯片设计了一种结构简单,阻抗匹配方便,在867 MHz和915 MHz均出现频率谐振点,具有较强的实用价值的标签天线。设计时采用Zeland公司的IE3D软件进行仿真实验,介质板采用工业上最常用、价格又低廉的FR4敷铜板,其厚度为1.6 mm,敷铜厚0.03 mm,介电常数4.7。
2 标签天线设计
标签芯片的阻抗一般呈现大的容性电抗和小的电阻,这样高Q值的芯片阻抗,使得匹配天线的设计变得很困难,并且限制了天线的阻抗带宽。但是由于成本和制造的要求,标签天线必须直接与芯片匹配。
以前常用的各种变形偶极子标签天线为了实现同芯片的阻抗匹配,其谐振频率与匹配的频率之间存在差异,致使阻抗带宽呈窄带特性。文献[3]中提出的电磁耦合馈电结构模型较好地解决了这个问题。此结构由一个独立的辐射主体和一个与之耦合的环形线圈组成,由文献[3]中的等效电路可知,在谐振频率处,天线的输入阻抗Z0各分量为: