PON按信号分配方式可以分为功率分割型无源光网络(PSPON)和波分复用型无源光网络(WDM-PON)。目前,APON、BPON、EPON、GPON均属于PSPON。PSPON采用星型耦合器分路,上/下行传送采用TDMA/TDM方式,实现共享信道带宽,分路器通过功率分配将OLT发出的信号分配到各个ONU上。WDM-PON则是将波分复用技术运用在PON中,光分路器通过识别OLT发出各种波长,将信号分配到各路ONU。
PSPON较为成熟,特加是EPON、GPON在北美、日本已经有较大规模的部署,但PSPON仍然存在关键问题需要解决,比如快速比特同步、动态带宽分配、基线漂移、ONU的测距与延时补偿、突发模式光收发模块的设计等。虽然一些问题得到了解决,但成本较高。
基于波分复用技术的WDM-PON采用波长作为用户端ONU的标识,利用波分复用技术实现上行接入,能够提供较宽的工作带宽,可以实现真正意义上的对称宽带接入。同时,还可以避免时分多址技术中ONU的测距、快速比特同步等诸多技术难点,并且在网络管理以及系统升级性能方面具有明显优势。
随着技术的进步,波分复用光器件的成本尤其是无源光器件的成本大幅度下降,质优价廉的WDM器件不断出现,WDM-PON技术将成为PON接入网一个可以预见的发展趋势。下面,对WDM-PON中的OLT光源、ONU光源、光分路器所涉及的核心技术问题逐一进行分析。
OLT光源的选择
目前,有多种方法构造多波长光源。第一种方法是选择一组波长接近的、离散的、可调谐的DFB激光器(DFB激光器阵列),利用温度调谐产生多波长的下行信号。DFB激光器阵列输出光谱可以通过控制温度统一调谐,容易实现波长监控,但由于DFB激光器输出波长随波导有效折射率变化,很难精确控制输出光谱与波长路由器信道间隔匹配。
第二种方法是采用多频激光器(MFL)。MFL是一种基于集成半导体放大器和WGR(WaveguideGratingRouter)技术的新型WDM激光器,包含N个光放大器和一个1хN的阵列波导光栅,阵列波导光栅的每个输入端集成一个光放大器。在光放大器和阵列波导光栅输出端之间形成一个光学腔,如果放大器的增益克服腔内的损耗,则有激光输出,输出波长由阵列波导光栅的滤波特性决定。通过直接调制各个放大器的偏置电流,就可以产生多波长的下行信号。MFL的波长间隔由阵列波导光栅中的波导长度差决定,可以精确控制,各波长可以通过控制同一个温度统一调节,便于波长监控,是理想的OLT光源。
第三种方法是比特交错光源。它使用了一个飞秒级(10-15)光纤激光器产生一个1.5um附近70nm谱宽的脉冲,这一脉冲被22KM长的标准单模光纤啁啾。随着脉冲的传输,数据可在高速调制器中以比特交错的方式被加以编码。
光分路器的选择
在WDM-PON中,波分复用器通常称为波长路由器,它解复用下行信号,并分配给指定的OUN,同时把上行信号复用到一根光纤,传输到OLT。波长分路器主要由阵列波导光栅(AWG)构成。目前,在波长分路器实现中需要关注串扰、温度稳定性问题以及色散效应。
针对AWG器件,由于隔离度不理想或者非线性光学效应的影响,其他光通道的信号会泄露到传输通道形成噪声,从而对系统性能造成影响。AWG由输入输出波导、平板波导和波导阵列组成,都集成在同一衬底。聚焦模场和输出波导的场分布不是矩形结构,它是串扰的最直接来源。目前,已经有三种方法来抑制串扰,即激光束逐点扫描法、变迹相位模板法、均匀相位模板法。
在WDM-PON系统中,AWG器件一般都放在野外,环境温度变化比较大。由于AWG的主要材料是石英,而石英的折射率易随着温度的变化而变化,因此,AWG复用的信道波长容易受温度的影响。温度变化时,如何保证信道波长的稳定性是一个值得研究的问题。目前,人们已研究出多种方法增强AWG的温度稳定性。其中,有利用折射率随温度作反方向变化的波导或在阵列波导之间刻蚀不同长度的凹槽的方法来实现温度控制。
随着WDM-PON系统接入距离的增加,光纤色散和阵列波导的色散效应会导致系统误码率增加。目前认为能够比较好地解决色散效应的方法是色散补偿光纤光栅,通过在AWG中加入补偿光纤光栅改善色散特性。色散补偿是对频率的二次相移所造成的脉冲展宽进行压缩补偿。如果波导光栅输出的响应频率的二次相移特性比较平坦,频带较宽且幅度满足要求,则认为此波导光栅的色散补偿特性较好。