»ùÓÚDSPµÄÈÎÒⳤ¶ÈαËæ»úÐòÁвúÉú·½·¨

Ïà¹ØרÌ⣺ оƬ

ÔÚʵ¼ÊÓ¦ÓÃÖÐ, Ö±½ÓÀûÓÃDSP²úÉúÈÎÒⳤ¶ÈαËæ»úÐòÁеķ½·¨, ¿ÉÒÔΪϵͳÉè¼ÆºÍ²âÊÔ´øÀ´±ãÀû¡£ÎÄÖлùÓÚÏßÐÔͬÓàËã·¨, ½áºÏAnalo Gdevices¹«Ë¾DSPоƬTigerSHARC20XSµÄÔËËã½á¹¹, Éè¼Æ³öÒ»ÖÖÀûÓÃÑ°Ö·µÝ¼õ³¤¶ÈÐòÁÐ, ´Ó¶ø²úÉú¾ßÓбéÀúÐÔµÄÈÎÒⳤ¶ÈαËæ»úÐòÁеķ½·¨¡£Í¨¹ý¶Ô±È, ˵Ã÷´Ë·½·¨³É¹¦½â¾öÁË´«Í³·½·¨ÖÐ, ÀûÓÃDSPµÄ·´À¡Î»ÒƼĴæÆ÷Ö»ÄܲúÉú2n (1≤n≤32)³¤¶ÈαËæ»úÐòÁеÄÎÊÌâ, ÔÚÉú³ÉÐòÁеÄÈÎÒⳤ¶È·½Ãæ¾ßÓÐÒ»¶¨´´ÐÂÐÔ, ¶ÔͨÐÅ´«ÊäºÍÀ×´ï±äƵ¿¹¸ÉÈžßÓÐÒ»¶¨µÄ²Î¿¼¼ÛÖµ¡£

¹Ø¼ü´Ê¡¡ÏßÐÔͬÓàËã·¨; αËæ»úÊý; ÈÎÒⳤ¶ÈÐòÁÐ; DSP

Genera tion Method about Pseudo Random Sequence of Optiona l Cycle Ba sed on DSP

Abstract¡¡In many p rojects, it is a great advantage for designing and debugging systems to generate the p seudo random sequence by DSP. Based on the analysis of the linear congruential generator and TigerSHARC20XS of ANALOGDEV ICES, this paper p resents a method for generating the p seudo random sequence in op tional cycle by ad2 dressing the sequence of descending length. Compared with traditionalmethods, the new method, which is innova2 tive in op tional cycle, solves the p roblem that the p seudo random sequence can only be in a fixed cycle of 2n ( 1≤n≤32) using DSP in traditional methods and is of value in the transmission of communication and anti2jamming of the frequency hopp ing radar.

Keywords¡¡LCG; p seudo random number; op tional cycle sequence; DSP

Ëæ»úÊýÊÇËäÈ»¾ßÓÐÒ»¶¨µÄͳ¼Æѧ¹æÂÉ, µ«³éÑùÖµ²»ÄÜÊÂÏÈÈ·¶¨µÄÊý¡£Êµ¼ÊÖвúÉúµÄËæ»úÊý²»ÊǾø¶ÔËæ»úÊý, ¶øÊÇÏà¶ÔµÄ, ³ÆΪ“αËæ»úÊý” ¡£Î±Ëæ»úÊý¼ÈÓÐËæ»úÊýËù¾ßÓеÄÓÅÁ¼Ïà¹ØÐÔ, ÓÖÓÐËæ»úÊýËù²»¾ß±¸µÄ¹æÂÉÐÔ¡£ÕâÁ½¸öÌصã, ʹµÃÒÔαËæ»úÊýΪ»ù´¡µÄαËæ»úÐźżÈÒ×ÓÚ´Ó¸ÉÈÅÐźÅÖб»Ê¶±ðºÍ·ÖÀë³öÀ´,ÓÖ¿ÉÒÔ·½±ãµÄ²úÉúºÍÖظ´¡£Òò´ËαËæ»úÐòÁÐÔÚͨѶ¡¢À×´ï¡¢µ¼º½¡¢²âÁ¿¡¢ÃÜÂë¡¢¼ÆËã»ú¡¢Ïà¹Ø±æʶ¼°¹ÊÕÏÕï¶ÏµÈÐí¶àÁìÓòÖж¼ÓÐ׏㷺µÄÓ¦Óá£

ÔÚÐí¶àÎÄÏ×ÖÐ, Éæ¼°µÄαËæ»úÐòÁвúÉú·½·¨¶àÊÇ»ùÓڸ߼¶ÓïÑÔµÄ, ½ÏÉÙÉæ¼°Ó²¼þ¾ßÌåʵÏÖÎÊÌâ¡£ÒÑÓеÄһЩӲ¼þʵÏÖ·½·¨, ÔÚFPGAоƬºÍDSPоƬÉ϶¼ÓйýÓ¦Óà ¡£ÆäÖÐÔÚÓÃDSPоƬʵÏÖʱ, Èç¹ûÒªÇó²úÉúÈÎÒⳤ¶ÈM (M > 0)µÄÒ»¸öαËæ»úÐòÁв¢±£Ö¤ÔÚÎÞÖظ´ÊýµÄÇ°ÌáϸÃÐòÁаüº¬0¡«M - 1µÄÿһ¸öÊý,´«Í³×ö·¨ÎÞ·¨Íê³É; Ö»Óн«Éú³ÉµÄÐòÁ㤶ÈM ÏÞÖÆΪ2n (1≤n ≤32)ʱ, ²ÅÄÜÂú×ãÒªÇó¡£ÎÄÖнéÉܵĻùÓÚDSPµÄαËæ»úÐòÁвúÉú·½·¨½â¾öÁËÕâÑùµÄÎÊÌâ, ¿ÉÒÔ²úÉúÈÎÒⳤ¶ÈµÄαËæ»úÐòÁÐ, ¶Ô¹¤³ÌÓ¦ÓÃÓÐÒ»¶¨µÄÏÖʵÒâÒå¡£

1¡¡ÏßÐÔͬÓàËã·¨µÄ»ù±¾Ô­Àí

ÏßÐÔͬÓàËã·¨[ 6 ]µÄºËÐĹ«Ê½ÊÇXn + 1 = ( aXn + b) modM, n = 0, 1, ï, M - 1¡£ÆäÖÐ, a ( 0≤a≤M )ÊÇ ³ËÊý, b ( 0 ≤ b ≤M ) ÊǼÓÊý, M (M > 0 ) ÊÇÄ£Êý, X0 (0≤X0 ≤M )ÊdzõÖµ¼´ÖÖ×Ó¡£Ä£ÊýM Ò²µÈÓÚÉú³ÉµÄ αËæ»úÐòÁеij¤¶È, ËùÓвÎÊý¾ùΪÕûÊý¡£ ÏßÐÔͬÓàËã·¨²úÉúµÄαËæ»úÐòÁÐÔÚ²»¸ü»»ÖÖ×ÓµÄ Ç°ÌáÏÂÒÔM (M = 2n )ΪÖÜÆÚ³öÏÖÑ­»·, Èç¹ûM ²»µÈÓÚ 2n , ÐòÁн«ÒÔ0 = 7ʱ, Éú³ÉÐòÁÐΪ{ 6, 9, 0, 7, 6, 9, ...} , ÖÜÆÚΪ4; µ±M = 8, a =5, b = 1, X0 = 1 ʱ, Éú³ÉÐòÁÐΪ{ 6, 7, 4, 5, 2,3, 0, 1, 6, 7, ...} , ÖÜÆÚΪ8; µ±M = 16, a = 5,b = 3, X0 = 7 ʱ, Éú³ÉÐòÁÐΪ{ 6, 18, 11, 10, 5,12, 15, 14, 9, 0, 3, 2, 13, 4, 7, 6, 1, ...} ,ÖÜÆÚΪ16¡£

ÓÉÉÏÃæµÄÀý×Ó¿ÉÒÔ¿´³ö, Ö±½ÓÔËÓÃÏßÐÔͬÓàËã·¨ÓÃÓ²¼þ²úÉúαËæ»úÐòÁÐÔÚʵ¼Ê¹¤³ÌÓ¦ÓÃÖв¢²»Áé»î¡£±ÈÈçÔÚÀ×´ïÐźŴ¦ÀíÖÐ, ΪÁ˼õСÍâ½ç¶ÔÀ×´ïÐźŽÓÊյĸÉÈÅ, »áÒªÇó·¢Éä»úºÍ½ÓÊÕ»úÒÔÒ»¶¨µÄʱ¼ä¼ä¸ôËæ»úµØÔÚÒ»¶¨ÊýÄ¿µÄƵµãÉÏÌøƵ, ÔÚÌøƵ¹ý³ÌÖв»ÌøÍêËùÓй涨µÄƵµã²»ÔÊÐíÖظ´¡£Èç¹ûÒ»¸öƵµãÓÃÒ»¸öαËæ»úÊýÀ´¶ÔÓ¦, Õâ¾Í¿ÉÒԵȼÛΪһ¸öαËæ»úÐòÁÐÎÊÌâ¡£ÏÔÈ», ²»ÄÜÒòΪ´«Í³·½·¨Éú³ÉµÄαËæ»úÐòÁг¤¶È±ØÐëΪ2n ( 1≤n ≤32) , ¶øÒªÇó·¢Éä»úºÍ½ÓÊÕ»úµÄÌøƵµã¸öÊýÒ²Éè¼ÆΪ2n (1≤n≤32) ¡£

2¡¡ÈÎÒⳤ¶ÈαËæ»úÐòÁвúÉú·½·¨¼°DSPʵÏÖ

ÓÉÉÏÃæµÄ¾ÙÀý¿ÉÒÔ¿´³ö, ÔÚÐòÁ㤶ÈM ≠2n µÄʱºò, Éú³ÉÐòÁÐÖеÄÊý¶¼

ÏÂÃæ½áºÏDSPµÄÓ²¼þʵÏÖ¾ßÌå²ûÊö¸÷¸ö²½Öè¡£Ê×ÏÈ, ÓÃDSP³ÌÐòÉú³ÉÒ»×éÌض¨³¤¶ÈΪM µÄÊýÈ»ºó·ÅÈëÄÚ´æÖÐ, ÕâÀïµÄM ¿ÉÒÔµÈÓÚ2n Ò²¿ÉÒÔÊÇÈÎÒâÖµ¡£Ò²¿ÉÒÔÊÂÏÈÔÚÍⲿÎļþÖÐдºÃÐèÒªÊä³öµÄÒ»×éÊýÈ»ºóµ¼ÈëDSPµÄÄÚ´æÖС£¸ù¾Ý²»Í¬µÄÓ¦Óó¡ºÏ,·ÅÈëÄÚ´æµÄÕâ×éÊý¿ÉÒÔÊÇ0¡«M - 1, Ò²¿ÉÒÔÊÇûÓÐÈκιæÂÉÅÅÁеÄÈÎÒâM ¸öÊý¡£

Æä´Î, ¸ù¾ÝÒªÇó¸øÖÖ×Ó¡¢³ËÊý¡¢¼ÓÊýºÍÄ£Êý¸³Öµ, µ÷ÓÃÇóÓà×Ó³ÌÐò¸ù¾ÝÏßÐÔͬÓàËã·¨¹«Ê½½øÐÐÔËËã, µÃµ½Ò»¸öÓàÊý¡£Óõõ½µÄÓàÊý×÷ΪƫÒƵØÖ·, ¼ÓÉÏÒÑ·ÅÈëÄÚ´æÖÐÐòÁеÄÊ×µØÖ·Ò²¾ÍÊÇ»ùµØÖµ, ¾ÍµÃµ½ÁËÒ»¸ö·ÃÎʵØÖ·¡£ÒòΪ¸Õ²ÅµÄÇóÓà²Ù×÷ÊǶÔM ½øÐÐ,µÃµ½µÄÓàÊý¼´Æ«ÒƵØÖ·Ò»¶¨

ÔÙ´Î, °ÑÉÏÒ»²½ÒÑÊä³öÊýºóÃæµÄÿ¸öÊý¶¼ÏòÇ°´æ·ÅÒ»¸öµØÖ·, ÕâÑùÄÚ´æÖеÄÐòÁÐÊ×µØÖ·²»±ä, ÐòÁг¤¶È¼õ1¡£°ÑÄ£ÊýM Ò²¼õ1, ÒÔ¶ÔӦеÄÐòÁг¤¶È¡£ÔÙµ÷ÓÃÇóÓà×Ó³ÌÐò, ¸ù¾ÝÏßÐÔͬÓàËã·¨¹«Ê½½øÐÐÔËËã,µÃµ½ÓÖÒ»¸öÓàÊý¡£È»ºóͬÑù»áµÃµ½Ò»¸öзÃÎʵØÖ·,ͬÑùÄÜÊä³öÄÚ´æÖ㤶ÈΪM - 1µÄÐòÁÐÖеÄij¸öÊý,½«ÆäÊä³ö¡£

Ëæºó, °ÑÉÏÒ»²½ÒÑÊä³öÊýºóÃæµÄÿ¸öÊýÔÙ¶¼ÏòÇ°´æ·ÅÒ»¸öµØÖ·, ÕâÑùÄÚ´æÖеÄÐòÁÐÊ×µØÖ·»¹²»±ä, ÐòÁ㤶ÈÔÙ¼õ1, °ÑÄ£ÊýM Ò²ÔÙ¼õ1¡£°´ÕողŲûÊöµÄ²Ù×÷²½ÖèÖظ´½øÐÐ, Ö±ÖÁÄ£Êý±»¼õΪ1, ¾Í»áÊä³öÒ»¸ö·ûºÏÒªÇóµÄ³¤¶ÈΪµÄαËæ»úÐòÁС£´ËʱµÄÐòÁоÍÊÇÈÎÒⳤ¶ÈµÄαËæ»úÐòÁС£

×îºó, Èç¹ûÄÚ´æÖеÄÊý¶¼±»Êä³öÍê, ÖØе¼È볤¶ÈΪM µÄÐòÁÐ, ²¢¸ü»»ÖÖ×Ó , ³ËÊýºÍ¼ÓÊý¿ÉÒÔ¸ü»»Ò²¿ÉÒÔ²»¸ü»»¡£È»ºó½øÈëÐÂÒ»ÂÖµÄαËæ»úÊýÉú³É,ÐÂÉú³ÉÐòÁÐÖеÄM ¸öÊýºÍÒÑÉú³ÉÐòÁÐÖеÄM ¸öÊýÏà±È½Ï˳ÐòÒѾ­±»ÍêÈ«´òÂÒ¡£ÕâÑùÒ»Ö±Öظ´²Ù×÷ÏÂÈ¥,ÿÊä³öM ¸öÊý¸ü»»Ò»´ÎÖÖ×Ó, ¾Í¿ÉÒÔÉú³Éº¬ÓÐM ¸öÔªËصij¤¶ÈΪn ×M ( nΪÕýÕûÊý)µÄαËæ»úÐòÁС£

×÷Õߣº¶ÅÔÆ·å¡¡Î÷°²µç×ӿƼ¼´óѧ À´Ô´£º21ICµç×ÓÍø


΢ÐÅɨÃè·ÖÏí±¾Îĵ½ÅóÓÑȦ
ɨÂë¹Ø×¢5GͨÐŹٷ½¹«ÖÚºÅ,Ãâ·ÑÁìÈ¡ÒÔÏÂ5G¾«Æ·×ÊÁÏ
  • 1¡¢»Ø¸´¡°YD5GAI¡±Ãâ·ÑÁìÈ¡¡¶ÖйúÒƶ¯£º5GÍøÂçAIÓ¦ÓõäÐͳ¡¾°¼¼Êõ½â¾ö·½°¸°×ƤÊé¡·
  • 2¡¢»Ø¸´¡°5G6G¡±Ãâ·ÑÁìÈ¡¡¶5G_6GºÁÃײ¨²âÊÔ¼¼Êõ°×ƤÊé-2022_03-21¡·
  • 3¡¢»Ø¸´¡°YD6G¡±Ãâ·ÑÁìÈ¡¡¶ÖйúÒƶ¯£º6GÖÁ¼òÎÞÏß½ÓÈëÍø°×ƤÊé¡·
  • 4¡¢»Ø¸´¡°LTBPS¡±Ãâ·ÑÁìÈ¡¡¶¡¶ÖйúÁªÍ¨5GÖն˰×ƤÊé¡·¡·
  • 5¡¢»Ø¸´¡°ZGDX¡±Ãâ·ÑÁìÈ¡¡¶ÖйúµçÐÅ5GNTN¼¼Êõ°×ƤÊé¡·
  • 6¡¢»Ø¸´¡°TXSB¡±Ãâ·ÑÁìÈ¡¡¶Í¨ÐÅÉ豸°²×°¹¤³ÌÊ©¹¤¹¤ÒÕͼ½â¡·
  • 7¡¢»Ø¸´¡°YDSL¡±Ãâ·ÑÁìÈ¡¡¶ÖйúÒƶ¯ËãÁ¦²¢Íø°×ƤÊé¡·
  • 8¡¢»Ø¸´¡°5GX3¡±Ãâ·ÑÁìÈ¡¡¶R1623501-g605GµÄϵͳ¼Ü¹¹1¡·
  • ±¾ÖÜÈȵ㱾ÔÂÈȵã

     

      ×îÈÈͨÐÅÕÐƸ

    Òµ½ç×îÐÂ×ÊѶ


      ×îÐÂÕÐƸÐÅÏ¢

    ×îм¼ÊõÎÄÕÂ

    ×îÐÂÂÛ̳Ìù×Ó