CDMA技术是无线通信中的关键技术,目前在IS-95系统、WCDMA、CDMA2000第三代移动通信中均有应用,然而提高CDMA系统容量仍然是研究的热点问题。CDMA系统容量受限主要是由于分配给不同用户的PN序列互相关不为零所引起的多址干扰(MAI)及用户自身引起的白干扰(即多径干扰,MPI)。因此,减少多用户引起的MAI和多径传播引起的MPI,可以提高CDMA系统的容量。
CDMA系统中,为了减少多径衰落的不利影响,一般在接收端采用具有多径分集功能的RAKE接收机。随着智能天线技术的出现,将天线阵的空域处理与传统RAKE接收机的时域处理相结合,即构成空时RAKE(2-D RAKE)接收机。文献[2]最初提出2-DRAKE的概念,这种接收机将空域和时域结合起来进行信号处理,相对于传统RAKE接收机而言,性能有较大改善,它可将天线阵接收到的期望用户多径信号合并到一起,同时获得时间分集和空间分集的好处。但传统的空时RAKE接收机不能有效地抑制多用户CDMA系统中的多址干扰和远近效应问题。
多级干扰抵消通过对干扰信号重构并从接收信号中删除来改善系统性能和容量,而自适应天线通过将主波束指向期望用户,并将零陷指向非期望用户减少干扰,与期望用户到达角不同的信号则被削弱。文献[3]中,将干扰抵消技术与自适应天线结合起来,使系统性能大有改善。空时RAKE接收机与干扰抵消结合起来称为联合空时干扰抵消接收机,但是此种接收机的主要问题是计算复杂性比较高,解决此问题的一个方法就是进行预波束赋形,利用FFT波束形成器形成正交波束,使得从不同角度获取信号功率更容易,因此,2-D RAKE接收机所需要的指峰数将减少且系统性能无损耗。本文系统地比较了传统2-D RAKE接收机,联合空时干扰抵消接收机,基于FFT匹配滤波的2-DRAKE接收机性能,主要从接收机结构、工作原理出发进行分析。
首先介绍接收机的信道模型及结构,然后分析了各种接收机的性能,最后得出结论并讨论其中存在的一些问题。
1 系统模型
多用户直接序列扩频系统采用BPSK调制方式,则每一用户的等效传输基带信号为:
式中:dk(t)是间隔为Tb的二进制数据源信号:
ck(t)为用户k的扩频波形,码片间隔为Tc,有:
式中:aq(k)是第k个用户在第q个码片间隔的码序列;是等概率取±1的第j个数据比特;p(τ1,τ2)为矩形脉冲。假定信号服从多径瑞利衰落,第k个用户到达第l个阵元的信道冲激响应为:
式中:N为信道多径总数;αk,i是信道复衰落系数;τk,i为路径延时;为每一阵元的相位偏移,θk,i为第k个用户在第i条路径的到达角,d为阵元间距(一般取λ/2,λ为载波波长);τk,i为路径延时,且θk,i和τk,i服从几何单反射椭圆模型。因此,在第l个阵元接收到的信号为:
式中:n(l)(t)是均值为0,方差为的高斯噪声。
2 接收机结构
本文介绍三种接收机的结构:传统的2-D RAKE接收机,基于干扰抵消的2-D RAKE接收机和基于FFT的2-D RAKE接收机。
2.1 2-D RAKE接收机
在获得信道的空时模型后,空时二维RAKE接收机的主要优势在于可以利用信道的多径结构获得路径分集。传输信号的码结构使得接收机能够在时域上分离大于码片间隔Tc的多径信号,这些信号通过最大比合并能够提高输出信干噪比(SINR)。利用阵列天线在分离多径过程中加入新的空间维,使得分离多径信号成为可能,即使这些信号在时域不可分离。因此,也就产生了2-D RAKE接收机的概念。接收端的接收信号如式(3)所示,2-D RAKE接收机的结构如图1所示。
作者:姚丽娜 周围 来源:现代电子技术