基于数字移相的高精度脉宽测量系统及其FPGA实现

相关专题: 芯片

在测量与仪器仪表领域,经常需要对数字信号的脉冲宽度进行测量.这种测量通常采用脉冲计数法,即在待测信号的高电平或低电平用一高频时钟脉冲进行计数,然后根据脉冲的个数计算待测信号宽度,如图1所示.待测信号相对于计数时钟通常是独立的,其上升、下降沿不可能正好落在时钟的边沿上,因此该法的最大测量误差为一个时钟周期.例如采用80MHz的高频时钟,最大误差为12.5ns.

提高脉冲计数法的精度通常有两个思路:提高计数时钟频率和使用时幅转换技术.时钟频率越高,测量误差越小,但是频率越高对芯片的性能要求也越高.例如要求1ns的测量误差时,时钟频率就需要提高到1GHz,此时一般计数器芯片很难正常工作,同时也会带来电路板的布线、材料选择、加工等诸多问题.时幅转换技术虽然对时钟频率不要求,但由于采用模拟电路,在待测信号频率比较高的情况下容易受噪声干扰,而且当要求连续测量信号的脉宽时,电路反应的快速性方面就存在一定问题.

区别于以上两种方法,本文提出另一种利用数字移相技术提高脉宽测量精度的思路并使用FPGA芯片实现测试系统.

1 测量原理

所谓移相是指对于两路同频信号,以其中一路为参考信号,另一路相对于该参考信号做超前或滞后的移动形成相位差.数字移相通常采用延时方法,以延时的长短来决定两数字信号间的相位差,本文提出的测量原理正是基于数字移相技术.如图2所示,原始计数时钟信号CLK0通过移相后得到CLK90、CLK180、CLK270,相位依次相差90°,用这四路时钟信号同时驱动四个相同的计数器对待测信号进行计数.设时钟频率为f,周期为T,四个计数器的计数个数分别为m1、m2、m3和m4,则最后脉宽测量值为:

w=[(m1+m2+m3+m4)/4]×T  (1)

可以看到,这种方法实际等效于将原始计数时钟四倍频,以4f的时钟频率对待测信号进行计数测量,从而将测量精度提高到原来的4倍.例如原始计数时钟为80MHz时,系统的等效计数频率则为320MHz,如果不考虑各路计数时钟间的相对延迟时间误差,其测量的最大误差将降为原来的四分之一,仅为3.125ns.同时,该法保证了整个电路的最大工作频率仍为f,避免了时钟频率提高带来的一系列问题.

2 系统实现

系统实现的最关键部分是保证送入各计数器的时钟相对延迟精度,即要保证计数时钟之间的相位差.由于通常原始时钟频率已经相对较高(通常接近100MHz),周期在10~20ns之间,因此对时钟的延迟时间只有几ns,使用普通的延迟线芯片无法达到精度要求;同时为了避免电路板内芯片间传送延迟的影响,保证测试系统的精度、稳定性和柔性.本文采用现场可编程门阵列(FPGA)来实现所提出的测量方法.系统结构如图3所示.晶振产生原始输入时钟,通过移相计数模块后得到脉宽的测量值,测量结果送入FIFO缓存中,以加快数据处理速度,最后通过PCI总线完成与计算机的数据传输.逻辑控制用来协调各模块间的时序,保证系统的正常运行.为提高测试系统的灵活性和方便性,系统建立了内部寄存器,通过软件修改寄存器的值可以控制测试系统的启动停止,选择测量高电平或低电平等.移相计数模块、FIFO缓冲以及逻辑控制均在FPGA芯片内实现,芯片使用XILINX公司的SpartanII系列.

SpartanII系列是一款高性能、低价位的FPGA芯片,其最高运行频率为200MHz,这里选用其中的XC2S15-6(-6为速度等级).芯片提供了四个高精度片内数字延迟锁定环路(Delay-Locked Loop,即DLL),可以保证芯片内时钟信号的零传送延迟和低的时钟歪斜(Clock Skew);同时可以方便地实现对时钟信号的常用控制,如移相、倍频、分频等.在HDL程序设计中,可以使用符号CLKDLL调用片内DLL结构,其管脚图如图4所示.主要管脚说明如下:

CLKIN:时钟源输入,其频率范围为25~100MHz.

CLKFB:反馈或参考时钟信号,只能从CLK0或CLK2X反馈输入.

CLK?眼0|90|180|270?演:时钟输出,与输入时钟同频,但相位依次相差90°.其内部定义了属性DUTY_CYCLE_CORRECTION,可以用来调整时钟的占空比,值为FALSE时,输出时钟占空比和输入时钟一致,值为TRUE时将占空比调整为50%.

CLK2X:时钟源倍频输出,且占空比自动调整为50%.

CLKDV:时钟源分频输出,由属性 CLKDV_DIVIDE控制N分频,N可以为1.5、2、2.5、3、4、5、8或16.

LOCKED:该信号为低电平时,表示延迟锁相环DLL还没有锁定信号,上述输出时钟信号未达到理想信号;当变为高电平时,表示锁相环已经完成信号锁定,输出时钟信号可用.若时钟源输入频率大于60MHz,则系统锁定时间大约需20μs.

利用DLL功能可以非常快速方便地构建移相计数模块,实现本文前面介绍的测量方法.移相计数模块结构如图5所示.原始时钟通过CLKDLL处理后得到的相位依次相差90°的四路时钟输出为CLK0、CLK90、CLK180和CLK270,它们分别作为四个相同的16位计数器的计数时钟,待测信号连接计数器的使能端,同时控制四个计数器的启动和停止.有了各计数器的计数结果,再通过加法器得到累加的计数个数,最后计算出信号脉宽值.

 

作者:徐端颐,齐国生,张启程   来源:21IC电子网
微信扫描分享本文到朋友圈
扫码关注5G通信官方公众号,免费领取以下5G精品资料
  • 1、回复“YD5GAI”免费领取《中国移动:5G网络AI应用典型场景技术解决方案白皮书
  • 2、回复“5G6G”免费领取《5G_6G毫米波测试技术白皮书-2022_03-21
  • 3、回复“YD6G”免费领取《中国移动:6G至简无线接入网白皮书
  • 4、回复“LTBPS”免费领取《《中国联通5G终端白皮书》
  • 5、回复“ZGDX”免费领取《中国电信5GNTN技术白皮书
  • 6、回复“TXSB”免费领取《通信设备安装工程施工工艺图解
  • 7、回复“YDSL”免费领取《中国移动算力并网白皮书
  • 8、回复“5GX3”免费领取《R1623501-g605G的系统架构1
  • 本周热点本月热点

     

      最热通信招聘

      最新招聘信息

    最新技术文章

    最新论坛贴子