移动通信网讯,随着十八届三中全会公告尘埃落定,设立国家安全委员会无疑成为此次会议亮点之一。相关市场也闻风而动,业内人士表示,国家安全委员会的设立,将使政府对于网络安全行业的投入更具规划性。今年“棱镜门”事件为政府敲响了警钟,前期发改委实施的国家信息安全专项,提出将重点支持金融信息安全领域、云计算与大数据信息安全领域、信息安全分级保护领域、工业控制信息安全四大领域。而光通信作为通信网络重要分支,其安全技术也越来越受到重视。
以下是西安通信学院的曹东东、邓大鹏、朱峰、李将,以及西安邮电大学郭燕在《光通信研究》上发表的《光通信网物理层全光异或加解密技术研究》。
针对目前光通信保密系统中基于电信号处理的流密码加解密技术的局限性,提出基于全光信号处理的加解密技术;对几种典型的全光异或加密方案进行了研究,介绍了各自的工作原理、特点及研究进展;利用OptiSystem 软件搭建了基于SOA-MZI(半导体光放大器-马赫-曾德干涉仪)异或门的全光加解密系统仿真模型,并基于HNLF(高非线性光纤)的自相位调制效应设计了一个优化结构对系统进行优化。研究表明:全光加解密技术具有优良的特性,能使整个光通信保密系统运算速率更高,传输更安全。
引言
随着通信业务的快速增长,光纤通信网正在向高速率、宽带宽和大容量的全光通信网络发展,传统的基于光-电-光转换的信号处理方式已难以适应这种趋势,而作为一种重要的全光信号处理技术,全光逻辑异或门受到广泛关注,且基于各种不同方案的全光异或门已多见报道。
现有的光通信保密系统仍采用基于电信号处理的流密码加解密技术,由于受到电子“瓶颈”的限制,其加解密速率较低,实验室最高速率仅为2.5 Gbit/s。发生突发事件时,现有光通信网络的业务量将可能成几十倍甚至上百倍的剧增,传统的基于电信号处理的加解密技术难以适应超高速和超大容量的业务需求,也无法完全兼容下一代全光通信网络,而基于全光信号处理的加解密技术的速率可以超过100 Gbit/s。同时,现有的光纤通信网在光域内对数据光信号没有采取任何的安全处理,光纤信道只负责信号传送,即将比特光码从一个节点透明地传送到下一个节点。另外,我国光纤通信网中的SDH(同步数字体系)和DWDM(密集波分复用)技术体制均来自于国外,其接口协议、性能参数和码流特性等均对外公开,这对于光通信网而言是一个致命的缺陷。